모의비행 소형무인기 비행 전후 점검 학습 #3

강원도립대학교 ICT드론과

소형무인기 비행전후 점검 -학습모듈

대분류 <mark>운전·운송</mark>

중분류 항공 운전 · 운송

소분류 항공기 조종 운송

세분류

경향광기조종

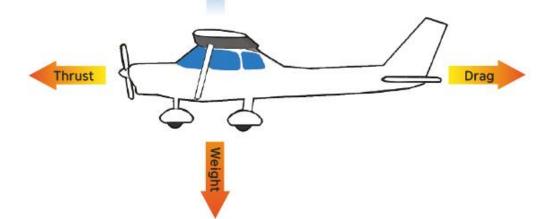
조의당용이자

조지(당행업사

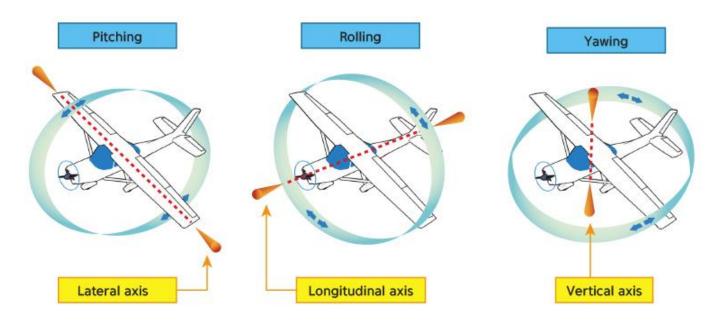
হর ভে৪২%

소형무인기운 용 · 조종

능력단위('17.4. 고시)	학습모 듈 명
소형무인기 지상 운용	소형무인기 지상 운용
소형무인기 비행 전 준비	소형무인기 비행 전 준비
소형무인기 비행 전후 점검	소형무인기 비행 전후 점검
회전익 소형무인기 비행	회전익 소형무인기 비행
고정익 소형무인기 비행	고정익 소형무인기 비행
소형무인기 내부 조종	소형무인기 내부 조종
소형무인기 비정상 상황 대처	소형무인기 비정상 상황 대처
회전익 소형무인기 팀 운용	회전익 소형무인기 팀 운용
고정익 소형무인기 팀 운용	고정익 소형무인기 팀 운용
소형무인기 촬영 운용	소형무인기 촬영 운용
소형무인기 살포 운용	소형무인기 살포 운용
소형무인기 감지 운용	소형무인기 감지 운용
소형무인기 이송 운용	소형무인기 이송 운용
소형무인기 콘텐츠 운용	소형무인기 콘텐츠 운용
소형무인기 공간정보 운용	소형무인기 공간정보 운 용
소형무인기 운용 관리	소형무인기 운용 관리

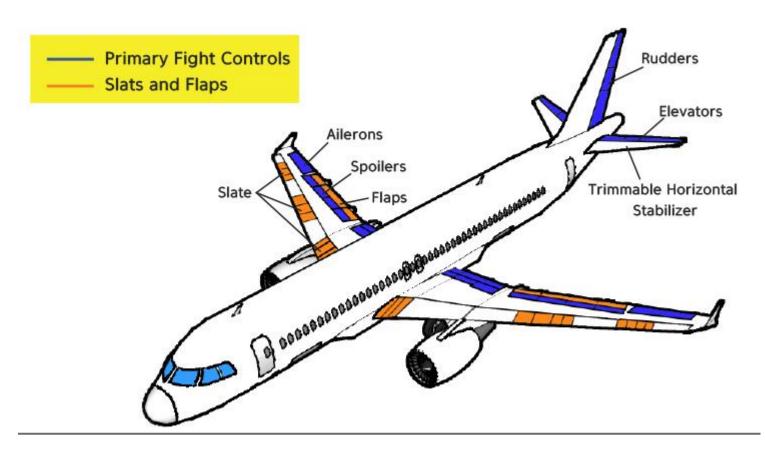

소형무인기 비행 전후 점검

- 학습내용
 - 학습 1. 비행체 점검하기
 - 학습 2. 임무장비 점검하기
 - 학습 3. 작동 점검하기
 - 학습 4. 제원 파악하기
 - 학습 5. 조종 특성 파악하기

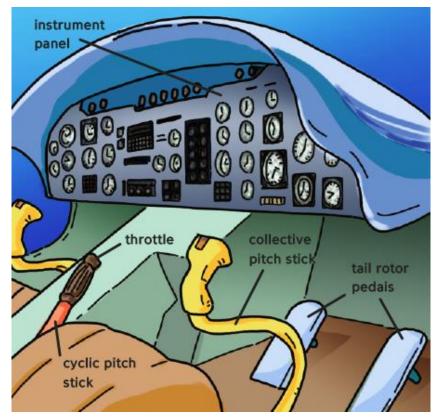

- 3-1 작동 점검 및 임무수행 가능 여부 판단
- 학습 목표
 - 비행절차서(운용자 매뉴얼)에 따라 고정익기의 주조종면을 구분 할수 있다.
 - 비행절차서(운용자 매뉴얼)에 따라 고정익기의 조종면을 동력 운전 상태에서 작동을 확인할 수 있다.
 - 비행절차서(운용자 매뉴얼)에 따라 회전익기 상승비행 직후 정상 작동 유무를 점검 할 수 있다.
 - 비행절차서(운용자 매뉴얼)에 따라 회전익기 정지비행상태에서 조종면 트림(trim)을 할 수 있다.

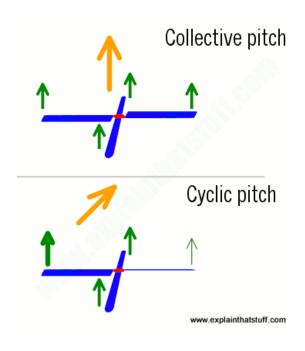
- 1. 무인항공기의 종류 및 구조의 이해
- 1. (무인)항공기의 종류
 - 항공기는 공기보다 가벼운 항공기와 무거운 항공기로 구분한다.
 공기보다 가벼운 항공기는 기구와 비행선이 있으며 공기보다
 무거운 항공기는 고정익 항공기와 회전익 항공기로 나뉜다.
 - 원격으로 조종되는 항공기의 경우 고정익 무인항공기와 회전익무인항공기로 나뉜다.
 - (1) 고정익 무인항공기
 - 비행체가 일반적인 비행기 형태의 고정 날개형태인 무인항공기 시스템이다.
 - (2) 회전익 무인항공기
 - 회전익 무인항공기는 무인 헬리콥터와 무인 멀티콥터로 나뉜다.
 - (가) 무인 헬리콥터
 - 비행체가 헬리콥터 형인 무인항공기 시스템이다.
 - (나) 무인 멀티콥터
 - 3개 이상의 다중의 로터를 탑재한 비행체를 이용하는 무인항공기 시스템이다.

- 2. 항공기 조종면 작동원리의 이해
 - 무인항공기 시스템 조종자는 비행시 항공기에 미치는 힘, 항공기의 운동과 축(Axes) 등 비행역학에 기초하여 항공기 조종면 작동원리를 이해하여야 한다.
 - 1. 항공기에 미치는 힘
 - 비행 중인 항공기에는 추력(Thrust)과 항력(Drag), 양력(Lift)과 무게(Weight)의 힘이 작용한다.
 - 이 힘에 대해서 알고 그 힘을 엔진출력과 조종면을 통해서 조절하는 법을 이해하는 것이 비행에 있어 필수적이다.



- 2. 항공기 조종면 작동원리의 이해
 - 2. 항공기의 운동과 축(Axes)
 - 가로축을 기준으로 하는 운동은 Pitching, 세로축을 기준으로 하는 항공기의 움직임을 Rolling, 수직축을 기준으로 하는 운동을 Yawing이라 한다.


- 2. 항공기 조종면 작동원리의 이해
 - 3. 항공기 조종면과 조종면의 작동
 - 무인항공기 시스템 조종자는 항공기 조종면과 주조종면의 작동원리를 이해하여야 한다.
 - (1) 조종면
 - (가) 주조종면(Primary Control Surface)
 - 항공기의 주조종면은 3개의 축(Rolling, Pitching & Yawing Axis)을 조종할 수 있는 항공기 장치로 에일러론(Ailerons), 엘리베이터(Elevators) 및 러더(Rudder)를 말한다.
 - 일반적으로 에일러론(Ailerons)은 주익에, 엘리베이터(Elevators)와 러더(Rudder)는 미익에 설치되어 있다.
 - (나) 부조종면
 - 항공기의 부조종면(Secondary Control Surface)은 주조종면을 도와 비행효율을 높여주는 항공기 장치로서 Flap, Tap, Spoiler 등이 있다.


- 2. 항공기 조종면 작동원리의 이해
 - 항공기 주조종면과 부조종면

- 2. 항공기 조종면 작동원리의 이해
 - (2) 주조종면의 작동원리
 - (가) 고정익 항공기
 - 고정익 항공기의 Rolling은 에일러론(Ailerons)에 의해, Pitching은 엘리베이터(Elevators)에 의해, 그리고 Yawing은 러더(Rudder)에 의해 조종된다.
 - (나) 회전익 항공기
 - 회전익 항공기의 경우 콜렉티브(Collective) 피치 조종을 통한 메인 로터블레이드의 피치각 조정, 사이클릭(Cyclic) 피치 조종을 통한 메인 로터블레이드의 피치각 조정, 그리고 반토크 페달(Pedals)의 조작을 통한 테일 로터블레이드의 피치각 조정에 의해 조종된다.

- 2. 항공기 조종면 작동원리의 이해
 - (2) 주조종면의 작동원리
 - (나) 회전익 항공기 주 조종면 작동

- 2. 항공기 조종면 작동원리의 이해
 - (3) 고정익기/회전익기 주조종면 작동 점검절차의 이해
 - 무인항공기 시스템 조종자는 비행절차서(운용자 매뉴얼)에 기술된 무인항공기 시스템의 주조종면을 구분하고 주조종면 작동절차를 이해하여야 한다.
 - 1. 고정익기 주조종면 작동 점검절차
 - 무인항공기 시스템 조종자는 무인항공기 시스템 운용 전에 비행절차서(운용자 매뉴얼)에기술된 조종면 점검절차에 따라 작동상태를 점검하여야 한다.
 - (1) 주조종면 구분
 - 무인항공기 시스템 조종자는 비행절차서(운용자 매뉴얼)를 검토하여 주조종면이 어떤것인지를 확인한다.
 - (2) 점검절차
 - 조종자는 지상에서 항공기의 시동을 건 후 동력 운전 상태에서 조종장치의 조종간(Control Stick)을 조작하여 스로틀(Throttle), 에일러론(Ailerons), 엘리베이터(Elevators) 및 러더(Rudder)가 정상적으로 작동하는지를 확인한다.

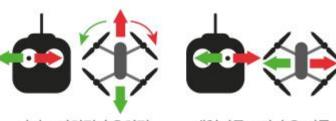
- 2. 항공기 조종면 작동원리의 이해
 - 2. 회전익기 주조종면 작동 점검절차
 - 조종자는 무인항공기 시스템 운용 전에 비행절차서(운용자 매뉴얼)에 기술된 주조종면 점검절차에 따라 작동상태를 점검하여야 한다.
 - (1) 조종면 조절(Trim)절차
 - 무인항공기 시스템 조종자는 항공기의 시동을 걸고 정지비행(Hovering)을 할 때 항공기가 한쪽 방향으로 흐름현상이 발생할 경우 조종면을 조절(Trim)하여 정지비행상태를 유지시켜야 한다. 조종장치에 달린 4개의 트림 탭을 항공기가 움직이는 방향의 반대방향으로 한 칸씩 움직여서 조절해야 한다.
 - 예를 들어 스로틀(Throttle)을 올렸는데 항공기가 왼쪽으로 간다면 다음과 같은 요령으로 조종면을 조절(Trim)한다.
 - (가) 항공기를 착륙시키고 에일러론(Aileron)을 조절하는 트림 탭을 오른 쪽으로 한칸 이동
 - (나) 다시 항공기를 띄워서 움직임 확인
 - (다) 여전히 왼쪽으로 간다면 다시 착륙시키고 에일러론(Aileron)을 조절하는 트림 탭을 오른 쪽으로 한 칸 이동
 - (라) 다시 항공기를 띄워서 움직임 확인

- 2. 항공기 조종면 작동원리의 이해
 - 2. 회전익기 주조종면 작동 점검절차
 - (2) 주조종면 점검절차

Mode 1

• 무인항공기 시스템 조종자는 항공기의 시동을 걸고 상승비행 직후 조종장치의 조종간(Control Stick)을 조작하여 스로틀(Throttle), 에일러론(Ailerons), 엘리베이터(Elevators) 및 러더(Rudder)가 정상적으로 작동하는지를 확인한다.

러더: 좌회전 / 우회전



에일러론: 좌 / 우 이동

- 2. 항공기 조종면 작동원리의 이해
 - 2. 회전익기 주조종면 작동 점검절차
 - (2) 주조종면 점검절차
 - 무인항공기 시스템 조종자는 항공기의 시동을 걸고 상승비행 직후 조종장치의 조종간(Control Stick)을 조작하여 스로틀(Throttle), 에일러론(Ailerons), 엘리베이터(Elevators) 및 러더(Rudder)가 정상적으로 작동하는지를 확인한다.

Mode 2

러더: 좌회전 / 우회전

에일러론: 좌 / 우 이동

- 수행내용 / 작동 점검하기
- 재료·자료
 - 비행절차서(운용자 매뉴얼)
 - 비행 전 작동 점검 목록
- 기기(장비 •공구)
 - 비행준비가 완료된 무인항공기 시스템
- 안전 •유의 사항
 - 무인항공기 시스템 구성요소와 제원(임무장비 관련 내용)을 숙지한다.
 - 무인항공기 시스템 점검목록 및 임무장비 점검절차를 숙지한다.

- 수행 순서
 - 1 제작사의 운용자 매뉴얼을 통해 무인항공기 시스템 구성요소와 제원(조종면 관련 내용)을 확인한다.
 - 2 무인항공기 시스템의 비행 전 작동 점검목록을 확인하고 작동 점검절차를 상세히 검토 한다.
 - 1. 비행 전 조종자가 사용해야 할 작동 점검목록을 검토한다.
 - 2. 비행 전 조종자가 사용해야 할 작동 점검절차를 검토한다.

소형무인기 비행 전후 점검

• 3-1 작동 점검 및 임무수행 가능 여부 판단

• Q&A

학습과제

- 학습과제
 - 1. 다음 임무장비의 종류들을 조사하고 그 동작원리및 특징을 조사한다.
 - SAR(Synthetic Aperture Rader) : 위성영상레이다
 - FLIR: 전방감시 적외선 감지기
 - IRLS :적외선 라인 스캐너
 - 해안 감시 레이더
 - 거리 측정 레이더
 - LiDAR
 - 2. 다음 항공기의 부조종면의 종류에 대해 간략히 조사한다.
 - Spoilers
 - Flaps
 - Slate
 - 메일 주소 : wykim@gw.ac.kr
 - 메일 제목: 모의비행_학번_이름_11차_12차 과제